Discrimination of maize crop with hybrid polarimetric RISAT1 data

cg.contactD.Uppala@cgiar.orgen_US
cg.contributor.centerInternational Crops Research Institute for the Semi-Arid Tropics - ICRISATen_US
cg.contributor.centerIndian Space Research Organisation, National Remote Sensing Centre - ISRO-NRSCen_US
cg.contributor.crpCRP on Dryland Systems - DSen_US
cg.contributor.funderNot Applicableen_US
cg.coverage.countryINen_US
cg.coverage.regionSouthern Asiaen_US
cg.date.embargo-end-date2017-05-25en_US
cg.identifier.doihttps://dx.doi.org/10.1080/01431161.2016.1184353en_US
cg.isijournalISI journalen_US
cg.issn0143-1161en_US
cg.issue11en_US
cg.journalInternational Journal of Remote Sensingen_US
cg.subject.agrovocagricultureen_US
cg.volume37en_US
dc.contributorRamana, Kothapalli Venkataaen_US
dc.contributorPoloju, Srikanthen_US
dc.contributorRama, SeshaSai Mullapudi Venkataen_US
dc.contributorDadhwal, Vinay Kumaren_US
dc.creatorUppala, Deepikaen_US
dc.date.accessioned2017-02-10T16:24:31Z
dc.date.available2017-02-10T16:24:31Z
dc.description.abstractMicrowave remote sensing provides an attractive approach to determine the spatial variability of crop characteristics. Synthetic aperture radar (SAR) image data provide unique possibility of acquiring data in all weather conditions. Several studies have used fully polarimetric data for extracting crop information, but it is limited by swath width. This study aimed to delineate maize crop using single date hybrid dual polarimetric Radar Imaging Satellite (RISAT)-1, Fine Resolution Stripmap mode (FRS)-1 data. Raney decomposition technique was used for explaining different scattering mechanisms of maize crop. Supervised classification on the decomposition image discriminated maize crop from other land-cover features. Results were compared with Resourcesat-2, Linear Imaging Self Scanner (LISS)-III optical sensor derived information. Spatial agreement of 91% was achieved between outputs generated from Resourcesat-2, LISS-III sensor and RISAT-1 data.en_US
dc.formatPDFen_US
dc.identifierhttp://oar.icrisat.org/id/eprint/9531en_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/yqQeAKVn/v/ead0a9b1850112dcaffa9b7c477c2648en_US
dc.identifier.citationDeepika Uppala, Kothapalli Venkataa Ramana, Srikanth Poloju, SeshaSai Mullapudi Venkata Rama, Vinay Kumar Dadhwal. (25/5/2016). Discrimination of maize crop with hybrid polarimetric RISAT1 data. International Journal of Remote Sensing, 37(11), pp. 2641-2652.en_US
dc.identifier.statusLimited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/5680
dc.languageenen_US
dc.publisherTaylor & Francisen_US
dc.rightsCC-BY-NC-4.0en_US
dc.sourceInternational Journal of Remote Sensing;37,(2016) Pagination 2641,2652en_US
dc.subjectmicrowave remote sensingen_US
dc.subjectcrop characteristicsen_US
dc.subjectmaize cropen_US
dc.subjectpolarimetric radar imaging satelliteen_US
dc.subjectMaizeen_US
dc.titleDiscrimination of maize crop with hybrid polarimetric RISAT1 dataen_US
dc.typeJournal Articleen_US
dcterms.available2016-05-25en_US
dcterms.extent2641-2652en_US
mel.impact-factor1.640en_US

Files