Framework for agricultural performance assessment based on MODIS multitemporal data

cg.contactc.biradar@gmail.comen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerKhorezm Rural Advisory Support Service - KRASSen_US
cg.contributor.centerScientific-Information Center of the Interstate Coordination Water Commission of the Central Asia - SIC-ICWCen_US
cg.contributor.centerUniversity of Bonn - Uni-Bonnen_US
cg.contributor.centerGeocledian GmbHen_US
cg.contributor.centerMapTailor Geospatial Consulting GbRen_US
cg.contributor.centerUniversity of Colorado Boulder - CU Boulderen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectGeoinformatics and Data Management for integrated agroecosystem research, development and outreachen_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryKZen_US
cg.coverage.countryKGen_US
cg.coverage.countryTJen_US
cg.coverage.countryTMen_US
cg.coverage.countryUZen_US
cg.coverage.countryAFen_US
cg.coverage.regionCentral Asiaen_US
cg.coverage.regionSouthern Asiaen_US
cg.creator.idLoew, Fabian: 0000-0002-0632-890Xen_US
cg.creator.idBiradar, Chandrashekhar: 0000-0002-9532-9452en_US
cg.identifier.doihttps://dx.doi.org/10.1117/1.JRS.13.025501en_US
cg.isijournalISI Journalen_US
cg.issn1931-3195en_US
cg.issue2en_US
cg.journalJournal of Applied Remote Sensingen_US
cg.volume13en_US
dc.contributorLoew, Fabianen_US
dc.contributorUhl, Johannesen_US
dc.contributorKenjabaev, Shavkaten_US
dc.contributorDubovyk, Olenaen_US
dc.contributorIbrakhimov, Mirzahayoten_US
dc.contributorBiradar, Chandrashekharen_US
dc.creatorDimov, Dimoen_US
dc.date.accessioned2021-11-24T21:28:44Z
dc.date.available2021-11-24T21:28:44Z
dc.description.abstractWe present a hierarchical classification framework for automated detection and mapping of spatial patterns of agricultural performance using satellite-based Earth observation data exemplified for the Aral Sea Basin (ASB) in Central Asia. The core element of the framework is the derivation of a composite agricultural performance index which is composed of different subindicators taking into account cropping intensity, crop diversity, crop rotations, fallow land frequency, land utilization, water use efficiency, and water availability.We derive these subindicators from net primary productivity and evapotranspiration data obtained from the MODIS sensor on board the Terra satellite during the observation period from 2000 to 2016, as well as from cropland maps created through multiannual classification of normalized difference vegetation index (NDVI). We classified pixel-based NDVI time series covering more than 8 × 106 ha of irrigated cropland based on a hierarchical approach concatenating unsupervised and supervised classification techniques to automatically generate and refine training labels, which are then used to train a decision fusion classifier, achieving an average overall accuracy of 78%. The results give unprecedented insights into spatial patterns of agricultural performance in the ASB. The proposed method is transferable and applicable for global-scale mapping, and the results of this remote sensing-aided assessment can provide important information for regional agricultural planning purposes.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/2a35f0e9439c5109ac7278bd91fdf018/v/21156f0c9f7bafe7792493584c809785en_US
dc.identifier.citationDimo Dimov, Fabian Loew, Johannes Uhl, Shavkat Kenjabaev, Olena Dubovyk, Mirzahayot Ibrakhimov, Chandrashekhar Biradar. (14/6/2019). Framework for agricultural performance assessment based on MODIS multitemporal data. Journal of Applied Remote Sensing, 13 (2).en_US
dc.identifier.statusOpen accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/66452
dc.languageenen_US
dc.publisherSociety of Photo-optical Instrumentation Engineers (SPIE)en_US
dc.rightsCC-BY-4.0en_US
dc.sourceJournal of Applied Remote Sensing;13,(2019)en_US
dc.subjectcropping intensityen_US
dc.subjectcrop diversityen_US
dc.subjectunsupervised classificationen_US
dc.subjectcropland mappingen_US
dc.subjectcropland mapping; land use indicators; clustering; supervised classification; cropping intensity; crop diversity; agricultural performanceen_US
dc.subjectland use indicatorsen_US
dc.subjectclustering;en_US
dc.subjectsupervised classificationen_US
dc.subjectagricultural performanceen_US
dc.titleFramework for agricultural performance assessment based on MODIS multitemporal dataen_US
dc.typeJournal Articleen_US
dcterms.available2019-06-14en_US
mel.impact-factor1.530en_US
mel.project.openhttp://www.icarda.org/en_US

Files