Within-field wheat yield prediction from IKONOS data: a new matrix approach

cg.contacteden.enclona@yale.eduen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerYale University, Center for Earth Observation - YALE - CEOen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.date.embargo-end-dateTimelessen_US
cg.identifier.doihttps://dx.doi.org/10.1080/0143116031000102485en_US
cg.isijournalISI Journalen_US
cg.issn0143-1161en_US
cg.issn1366-5901en_US
cg.issue2en_US
cg.journalInternational Journal of Remote Sensingen_US
cg.volume25en_US
dc.contributorThenkabail, Prasaden_US
dc.contributorCelis, Darianaen_US
dc.contributorDiekmann, Jurgenen_US
dc.creatorEnclona, E Aen_US
dc.date.accessioned2021-01-28T23:49:31Z
dc.date.available2021-01-28T23:49:31Z
dc.description.abstractThis study demonstrates a unique matrix approach to determine within-field variability in wheat yields using fine spatial resolution 4 m IKONOS data. The matrix approach involves solving a system of simultaneous equations based on IKONOS data and post-harvest yields available at entire field scale. This approach was compared with a regression-based modelling approach involving field-sensor measured yields and the corresponding IKONOS measured indices and wavebands. The IKONOS data explained 74–78% variability in wheat yield. This is a significant result since the finer spatial resolution leads to capturing greater spatial variability and detail in landscape relative to coarser spatial resolution data. A pixel-by-pixel mapping of wheat yield variability highlights the fine spatial detail provided by IKONOS data for precision farming applications.en_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifier.citationE A Enclona, Prasad Thenkabail, Dariana Celis, Jurgen Diekmann. (2/6/2010). Within-field wheat yield prediction from IKONOS data: a new matrix approach. International Journal of Remote Sensing, 25 (2), pp. 377-388.en_US
dc.identifier.statusTimeless limited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/12422
dc.languageenen_US
dc.publisherTaylor and Francisen_US
dc.sourceInternational Journal of Remote Sensing;25,(2010) Pagination 377-388en_US
dc.subjectwheat yielden_US
dc.subjectkonos dataen_US
dc.titleWithin-field wheat yield prediction from IKONOS data: a new matrix approachen_US
dc.typeJournal Articleen_US
dcterms.available2010-06-02en_US
dcterms.extent377-388en_US
dcterms.issued2004-01-01en_US
mel.impact-factor2.976en_US

Files