A chickpea genetic variation map based on the sequencing of 3,366 genomes
cg.contact | R.K.Varshney@CGIAR.ORG | en_US |
cg.contributor.center | International Center for Agricultural Research in the Dry Areas - ICARDA | en_US |
cg.contributor.center | International Crops Research Institute for the Semi-Arid Tropics - ICRISAT | en_US |
cg.contributor.center | International Maize and Wheat Improvement Center - CIMMYT | en_US |
cg.contributor.center | Indian Council of Agricultural Research - ICAR | en_US |
cg.contributor.center | Rajmata Vijayaraje Scindia Krishi Vishwavidyalaya University, Rafi Ahmad Kidwai College of Agriculture - RVSKVV-RAK | en_US |
cg.contributor.center | Cornell University - CORNELL | en_US |
cg.contributor.center | University of Arizona - Arizona | en_US |
cg.contributor.center | The University of Western Australia, Faculty of Science, School of Plant Biology - UWA - FoS - SoPB | en_US |
cg.contributor.center | Indian Council of Agricultural Research, Indian Agricultural Research Institute - ICAR-IARI | en_US |
cg.contributor.center | The University of Western Australia, Institute of Agriculture - UWA - IOA | en_US |
cg.contributor.center | International Rice Research Institute - IRRI | en_US |
cg.contributor.center | Institut de Recherche pour le Developpement - IRD | en_US |
cg.contributor.center | University of Saskatchewan - USASK | en_US |
cg.contributor.center | The University of Vermont - UVM | en_US |
cg.contributor.center | University of Calcutta | en_US |
cg.contributor.center | University of Nebraska-Lincoln - UNL | en_US |
cg.contributor.center | University of Georgia - UGA | en_US |
cg.contributor.center | Indian Council of Agricultural Research, Indian Institute of Pulses Research - ICAR-IIPR | en_US |
cg.contributor.center | Junagadh Agricultural University (Gujarat Agriculture University) - JAU (GAU) | en_US |
cg.contributor.center | The University of Western Australia - UWA | en_US |
cg.contributor.center | University of Queensland, Queensland Alliance for Agriculture and Food Innovation - UQ - Qaafi | en_US |
cg.contributor.center | Murdoch University | en_US |
cg.contributor.center | University of Missouri - MU USA | en_US |
cg.contributor.center | National Institute of Plant Genome Research - NIPGR | en_US |
cg.contributor.center | Shandong Academy of Agricultural Sciences | en_US |
cg.contributor.center | Zhejiang University - ZJU | en_US |
cg.contributor.center | Beijing Genomics Institute- Shenzhen - BGI-Shenzhen | en_US |
cg.contributor.center | University of Montpellier - UMONT | en_US |
cg.contributor.center | University of Queensland - UQ | en_US |
cg.contributor.center | Rani Lakshmi Bai Central Agricultural University - RLBCAU | en_US |
cg.contributor.center | Rajasthan Agricultural Research Institute - RARI | en_US |
cg.contributor.center | University of Chinese Academy of Sciences - UCAS | en_US |
cg.contributor.center | laboratoire Ecologie Fonctionnelle et Environnement - ECOLAB | en_US |
cg.contributor.center | The University of Queensland, School of Biological Sciences - UQ - SoBS | en_US |
cg.contributor.center | Skolkovo Institute of Science and Technology | en_US |
cg.contributor.center | China National GeneBank | en_US |
cg.contributor.crp | CGIAR Research Program on Grain Legumes and Dryland Cereals - GLDC | en_US |
cg.contributor.funder | Global Crop Diversity Trust - GCDT | en_US |
cg.contributor.project | Trait discovery and deployment through mainstreaming the wild gene pool in barley and grass pea breeding programs to adapt to climate change | en_US |
cg.contributor.project-lead-institute | International Center for Agricultural Research in the Dry Areas - ICARDA | en_US |
cg.creator.id | Roorkiwal, Manish: 0000-0001-6595-281X | en_US |
cg.creator.id | Thudi, Mahendar: 0000-0003-2851-6837 | en_US |
cg.creator.id | Rathore, Abhishek: 0000-0001-6887-4095 | en_US |
cg.creator.id | Hamwieh, Aladdin: 0000-0001-6060-5560 | en_US |
cg.creator.id | Agrawal, Shiv Kumar: 0000-0001-8407-3562 | en_US |
cg.creator.id | Yves, Vigouroux: 0000-0002-8361-6040 | en_US |
cg.identifier.doi | https://dx.doi.org/10.1038/s41586-021-04066-1 | en_US |
cg.isijournal | ISI Journal | en_US |
cg.issn | 1476-4687 | en_US |
cg.journal | Nature | en_US |
cg.subject.agrovoc | plant breeding | en_US |
cg.subject.agrovoc | chickpeas | en_US |
cg.subject.agrovoc | chickpea | en_US |
cg.volume | 599 | en_US |
dc.contributor | Roorkiwal, Manish | en_US |
dc.contributor | Sun, Shuai | en_US |
dc.contributor | Bajaj, Prasad | en_US |
dc.contributor | Chitikineni, Annapurna | en_US |
dc.contributor | Thudi, Mahendar | en_US |
dc.contributor | P. Singh, Narendra | en_US |
dc.contributor | Du, Xiao | en_US |
dc.contributor | Upadhyaya, Hari D. | en_US |
dc.contributor | Khan, Aamir | en_US |
dc.contributor | Wang, Yue | en_US |
dc.contributor | Vanika, Garg | en_US |
dc.contributor | Fan, Guangyi | en_US |
dc.contributor | Cowling, Wallace | en_US |
dc.contributor | Crossa, Jose | en_US |
dc.contributor | Gentzbittel, Laurent | en_US |
dc.contributor | Voss-Fels, Kai Peter | en_US |
dc.contributor | Kumar, Vinod | en_US |
dc.contributor | Pallavi, Sinha | en_US |
dc.contributor | Singh, Vikas | en_US |
dc.contributor | Ben, Cecile | en_US |
dc.contributor | Rathore, Abhishek | en_US |
dc.contributor | Ramu, Punna | en_US |
dc.contributor | Singh, Muneendra K. | en_US |
dc.contributor | Taran, Bunyamin | en_US |
dc.contributor | Chellapilla, Bharadwaj | en_US |
dc.contributor | Mohammad, Yasin | en_US |
dc.contributor | S. Pithia, Motisagar | en_US |
dc.contributor | Singh, Servejeet | en_US |
dc.contributor | Soren, Khela | en_US |
dc.contributor | Kudapa, Hima bindu | en_US |
dc.contributor | Jarquin, Diego | en_US |
dc.contributor | Cubry, Philippe | en_US |
dc.contributor | Hickey, Lee | en_US |
dc.contributor | Dixit, Girish Prasad | en_US |
dc.contributor | Thuillet, Anne-Céline | en_US |
dc.contributor | Hamwieh, Aladdin | en_US |
dc.contributor | Agrawal, Shiv Kumar | en_US |
dc.contributor | Deokar, Amit A | en_US |
dc.contributor | Chaturvedi, Sushil k. | en_US |
dc.contributor | Francis, Aleena | en_US |
dc.contributor | Howard, Reka | en_US |
dc.contributor | Chattopadhyay, Debasis | en_US |
dc.contributor | Edwards, David | en_US |
dc.contributor | Lyons, Eric | en_US |
dc.contributor | Yves, Vigouroux | en_US |
dc.contributor | Hayes, Ben J | en_US |
dc.contributor | von Wettberg, Eric J. B. | en_US |
dc.contributor | Datta, Swapan | en_US |
dc.contributor | Yang, Huanming | en_US |
dc.contributor | Nguyen, Henry T. | en_US |
dc.contributor | Wang, Jian | en_US |
dc.contributor | Siddique, Kadambot H M | en_US |
dc.contributor | Mohapatra, Trilochan | en_US |
dc.contributor | Bennetzen, Jeffrey | en_US |
dc.contributor | Xu, Xun | en_US |
dc.contributor | Liu, Xin | en_US |
dc.creator | Varshney, Rajeev | en_US |
dc.date.accessioned | 2022-03-03T23:12:56Z | |
dc.date.available | 2022-03-03T23:12:56Z | |
dc.description.abstract | Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively. | en_US |
dc.format | en_US | |
dc.identifier | https://mel.cgiar.org/reporting/downloadmelspace/hash/7e68a5e4f2daf113c67aaabd629e1346/v/7028a3b94b0d1905b74b2e95b8d2cfea | en_US |
dc.identifier.citation | Rajeev Varshney, Manish Roorkiwal, Shuai Sun, Prasad Bajaj, Annapurna Chitikineni, Mahendar Thudi, Narendra P. Singh, Xiao Du, Hari D. Upadhyaya, Aamir Khan, Yue Wang, Garg Vanika, Guangyi Fan, Wallace Cowling, Jose Crossa, Laurent Gentzbittel, Kai Peter Voss-Fels, Vinod Kumar, Sinha Pallavi, Vikas Singh, Cecile Ben, Abhishek Rathore, Punna Ramu, Muneendra K. Singh, Bunyamin Taran, Bharadwaj Chellapilla, Yasin Mohammad, Motisagar S. Pithia, Servejeet Singh, Khela Soren, Hima bindu Kudapa, Diego Jarquin, Philippe Cubry, Lee Hickey, Girish Prasad Dixit, Anne-Céline Thuillet, Aladdin Hamwieh, Shiv Kumar Agrawal, Amit A Deokar, Sushil k. Chaturvedi, Aleena Francis, Reka Howard, Debasis Chattopadhyay, David Edwards, Eric Lyons, Vigouroux Yves, Ben J Hayes, Eric J. B. von Wettberg, Swapan Datta, Huanming Yang, Henry T. Nguyen, Jian Wang, Kadambot H M Siddique, Trilochan Mohapatra, Jeffrey Bennetzen, Xun Xu, Xin Liu. (10/11/2021). A chickpea genetic variation map based on the sequencing of 3, 366 genomes. Nature, 599, pp. 622-627. | en_US |
dc.identifier.status | Open access | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11766/67169 | |
dc.language | en | en_US |
dc.publisher | NATURE RESEARCH | en_US |
dc.rights | CC-BY-4.0 | en_US |
dc.source | Nature;599,(2021) Pagination 622-627 | en_US |
dc.subject | natural variation in plants | en_US |
dc.subject | structural variations | en_US |
dc.subject | agricultural genetics | en_US |
dc.title | A chickpea genetic variation map based on the sequencing of 3,366 genomes | en_US |
dc.type | Journal Article | en_US |
dcterms.available | 2021-11-10 | en_US |
dcterms.extent | 622-627 | en_US |
mel.impact-factor | 49.962 | en_US |
mel.project.open | https://www.croptrust.org/our-work/supporting-crop-conservation/crop-wild-relatives/ | en_US |