A Spatial Econometric Approach to Designing and Rating Scalable Index Insurance in the Presence of Missing Data

cg.contributor.centerCornell University - CORNELLen_US
cg.contributor.centerInternational Livestock Research Institute - ILRIen_US
cg.contributor.crpCRP on Dryland Systems - DSen_US
cg.contributor.funderUnited States Agency for International Development - USAIDen_US
cg.contributor.funderEuropean Union, European Commission - EU-ECen_US
cg.contributor.funderAustralian Department of Foreign Affairs and Trade - DFAT(AusAID, ADRAS)en_US
cg.contributor.funderDepartment for International Development United Kingdom - DFIDen_US
cg.contributor.projectIndex-Based Livestock Insuranceen_US
cg.contributor.project-lead-instituteInternational Livestock Research Institute - ILRIen_US
cg.coverage.countryKEen_US
cg.coverage.regionEastern Africaen_US
cg.creator.idMude, Andrew: 0000-0003-4903-6613en_US
cg.identifier.doihttps://dx.doi.org/10.1057/gpp.2015.31en_US
cg.isijournalISI journalen_US
cg.issue2en_US
cg.journalGeneva Papers on Risk and Insurance: Issues and Practiceen_US
cg.subject.agrovocinsuranceen_US
cg.volume41en_US
dc.contributorShee, Apurbaen_US
dc.contributorMude, Andrewen_US
dc.creatorWoodard, Joshuaen_US
dc.date.accessioned2016-09-20T11:16:49Z
dc.date.available2016-09-20T11:16:49Z
dc.description.abstractIndex-Based Livestock Insurance has emerged as a promising market-based solution for insuring livestock against drought-related mortality. The objective of this work is to develop an explicit spatial econometric framework to estimate insurable indexes that can be integrated within a general insurance pricing framework. We explore the problem of estimating spatial panel models when there are missing dependent variable observations and cross-sectional dependence, and implement an estimable procedure which employs an iterative method. We also develop an outof-sample efficient cross-validation mixing method to optimise the degree of index aggregation in the context of spatial index models.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/aRPIKiQB/v/ead1c6e37dbdb24a43e1c698e90d3e67en_US
dc.identifier.citationJoshua Woodard, Apurba Shee, Andrew Mude. (20/1/2016). A Spatial Econometric Approach to Designing and Rating Scalable Index Insurance in the Presence of Missing Data. Geneva Papers on Risk and Insurance: Issues and Practice, 41(2), pp. 1-21.en_US
dc.identifier.statusOpen accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/4953
dc.languageenen_US
dc.publisherBlackwell Publishingen_US
dc.rightsCC-BY-NC-4.0en_US
dc.sourceGeneva Papers on Risk and Insurance: Issues and Practice;41,(2016) Pagination 1,21en_US
dc.subjectagropastoralen_US
dc.subjectbio-economic modelingen_US
dc.titleA Spatial Econometric Approach to Designing and Rating Scalable Index Insurance in the Presence of Missing Dataen_US
dc.typeJournal Articleen_US
dcterms.available2016-01-20en_US
dcterms.extent1-21en_US
mel.impact-factor0.373en_US
mel.project.openhttp://ibli.ilri.orgen_US

Files