Annual Cropland Mapping Using Reference Landsat Time Series—A Case Study in Central Asia

cg.contacthaopy8296@163.comen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerChinese Academy of Agricultural Sciences - CAASen_US
cg.contributor.crpCGIAR Research Program on Dryland Systems - DSen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.funderNational Natural Science Foundation of China - NSFCen_US
cg.contributor.projectGeoinformatics and Data Management for integrated agroecosystem research, development and outreachen_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryCNen_US
cg.coverage.countryKZen_US
cg.coverage.countryUZen_US
cg.coverage.regionEastern Asiaen_US
cg.coverage.regionCentral Asiaen_US
cg.creator.idLoew, Fabian: 0000-0002-0632-890Xen_US
cg.creator.idBiradar, Chandrashekhar: 0000-0002-9532-9452en_US
cg.identifier.doihttps://dx.doi.org/10.3390/rs10122057en_US
cg.isijournalISI Journalen_US
cg.issn2072-4292en_US
cg.issue12en_US
cg.journalRemote Sensingen_US
cg.subject.agrovoccentral asiaen_US
cg.subject.agrovoclandsaten_US
cg.subject.agrovocxinjiangen_US
cg.subject.agrovocBarleyen_US
cg.subject.agrovocWheaten_US
cg.subject.agrovocCottonen_US
cg.volume10en_US
dc.contributorLoew, Fabianen_US
dc.contributorBiradar, Chandrashekharen_US
dc.creatorHao, Pengyuen_US
dc.date.accessioned2019-01-21T19:20:19Z
dc.date.available2019-01-21T19:20:19Z
dc.description.abstractMapping the spatial and temporal dynamics of cropland is an important prerequisite for regular crop condition monitoring, management of land and water resources, or tracing and understanding the environmental impacts of agriculture. Analyzing archives of satellite earth observations is a proven means to accurately identify and map croplands. However, existing maps of the annual cropland extent either have a low spatial resolution (e.g., 250–1000 m from Advanced Very High Resolution Radiometer (AVHRR) to Moderate-resolution Imaging Spectroradiometer (MODIS); and existing high-resolution maps (such as 30 m from Landsat) are not provided frequently (for example, on a regular, annual basis) because of the lack of in situ reference data, irregular timing of the Landsat and Sentinel-2 image time series, the huge amount of data for processing, and the need to have a regionally or globally consistent methodology. Against this backdrop, we propose a reference time-series-based mapping method (RBM), and create binary cropland vs. non-cropland maps using irregular Landsat time series and RBM. As a test case, we created and evaluated annual cropland maps at 30 m in seven distinct agricultural landscapes in Xinjiang, China, and the Aral Sea Basin. The results revealed that RBM could accurately identify cropland annually, with producer’s accuracies (PA) and user’s accuracies (UA) higher than 85% between 2006 and 2016. In addition, cropland maps by RBM were significantly more accurate than the two existing products, namely GlobaLand30 and Finer Resolution Observation and Monitoring of Global Land Cover (FROM–GLC).en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/79391cfb1be61d54ced1a315fa6bc8c9/v/5031dc94c9f64fd8cabea5481d7158c1en_US
dc.identifier.citationPengyu Hao, Fabian Loew, Chandrashekhar Biradar. (18/12/2018). Annual Cropland Mapping Using Reference Landsat Time Series—A Case Study in Central Asia. Remote Sensing, 10 (12).en_US
dc.identifier.statusOpen accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/9266
dc.languageenen_US
dc.publisherMDPIen_US
dc.rightsCC-BY-4.0en_US
dc.sourceRemote Sensing;10,(2018)en_US
dc.subjectaral sea basinen_US
dc.subjectgoogle earth engineen_US
dc.subjectcropland mappingen_US
dc.subjectreference time seriesen_US
dc.titleAnnual Cropland Mapping Using Reference Landsat Time Series—A Case Study in Central Asiaen_US
dc.typeJournal Articleen_US
dcterms.available2018-12-18en_US
mel.impact-factor3.406en_US
mel.project.openhttp://www.icarda.org/en_US

Files