Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

cg.contactxiangming.xiao@ou.eduen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerUniversity of Oklahoma, Center for Spatial Analysis - OU - CSAen_US
cg.contributor.centerUniversity of Oklahoma, College of Arts and Sciences - OU - CASen_US
cg.contributor.crpCGIAR Research Program on Dryland Systems - DSen_US
cg.contributor.funderGovernment of Russian Federationen_US
cg.contributor.projectThe CGIAR collaborative research and capacity building project for the development of sustainable and resilient agricultural production systems in Central Asia under the conditions of changing climateen_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.admin-unitNortheastern Chinaen_US
cg.coverage.countryCNen_US
cg.coverage.regionEastern Asiaen_US
cg.creator.idBiradar, Chandrashekhar: 0000-0002-9532-9452en_US
cg.date.embargo-end-date2115-06-12en_US
cg.identifier.doihttps://dx.doi.org/http://dx.doi.org/10.1016/j.isprsjprs.2015.05.011en_US
cg.isijournalISI Journalen_US
cg.issn0924-2716en_US
cg.journalISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSINGen_US
cg.subject.agrovocfloodingen_US
cg.subject.agrovocRiceen_US
cg.volume106en_US
dc.contributorXiao, Xiangmingen_US
dc.contributorDong, Jinweien_US
dc.contributorKou, Weilien_US
dc.contributorJin, Cuien_US
dc.contributorQin, Yuanweien_US
dc.contributorZhou, Yutingen_US
dc.contributorWang, Jieen_US
dc.contributorMenarguez, Michael Angeloen_US
dc.contributorBiradar, Chandrashekharen_US
dc.creatorZhang, Gelien_US
dc.date.accessioned2016-05-12T07:58:33Z
dc.date.available2016-05-12T07:58:33Z
dc.description.abstractmanagement of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevieren_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0924271615001483en_US
dc.identifier.citationGeli Zhang, Xiangming Xiao, Jinwei Dong, Weili Kou, Cui Jin, Yuanwei Qin, Yuting Zhou, Jie Wang, Michael Angelo Menarguez, Chandrashekhar Biradar. (31/8/2015). Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS Journal of Photogrammetry and Remote Sensing, 106, pp. 157-171.en_US
dc.identifier.statusLimited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/4775
dc.languageenen_US
dc.publisherElsevieren_US
dc.sourceISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING;106,(2015) Pagination 157-171en_US
dc.subjectpaddy rice fieldsen_US
dc.subjectmodis imagesen_US
dc.subjectland surface water index (lswi)en_US
dc.subjectenhanced vegetation index (evi)en_US
dc.subjectland surface temperature (lst)en_US
dc.subjectnortheastern chinaen_US
dc.titleMapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index dataen_US
dc.typeJournal Articleen_US
dcterms.available2015-06-12en_US
dcterms.extent157-171en_US
dcterms.issued2015-08-31en_US
mel.impact-factor6.387en_US
mel.project.openhttps://mel.cgiar.org/projects/russianfundedprojectsen_US

Files