Tracking the dynamics of paddy rice planting areas through analysis of time series Landsat images
cg.contact | xiangming.xiao@ou.edu | en_US |
cg.contributor.center | International Center for Agricultural Research in the Dry Areas - ICARDA | en_US |
cg.contributor.center | Qingdao University of Science and Technology, Institute of Eco-Environment and Agriculture Information - QUST - IEEAI | en_US |
cg.contributor.center | University of Oklahoma, Center for Spatial Analysis - OU - CSA | en_US |
cg.contributor.center | University of Oklahoma, College of Arts and Sciences - OU - CAS | en_US |
cg.contributor.crp | CGIAR Research Program on Dryland Systems - DS | en_US |
cg.contributor.funder | Government of Russian Federation | en_US |
cg.contributor.project | The CGIAR collaborative research and capacity building project for the development of sustainable and resilient agricultural production systems in Central Asia under the conditions of changing climate | en_US |
cg.contributor.project-lead-institute | International Center for Agricultural Research in the Dry Areas - ICARDA | en_US |
cg.coverage.country | CN | en_US |
cg.coverage.region | Eastern Asia | en_US |
cg.creator.id | Biradar, Chandrashekhar: 0000-0002-9532-9452 | en_US |
cg.subject.agrovoc | biodiversity | en_US |
cg.subject.agrovoc | climate | en_US |
cg.subject.agrovoc | land | en_US |
cg.subject.agrovoc | water | en_US |
cg.subject.agrovoc | landsat images | en_US |
cg.subject.agrovoc | ecosystems | en_US |
dc.contributor | Dong, Jinwei | en_US |
dc.contributor | Zhang, Jinheng | en_US |
dc.contributor | Qin, Yuanwei | en_US |
dc.contributor | Zhang, Geli | en_US |
dc.contributor | Jin, Cui | en_US |
dc.contributor | Wang, Jie | en_US |
dc.contributor | Zhou, Yuting | en_US |
dc.contributor | Biradar, Chandrashekhar | en_US |
dc.creator | Xiao, Xiangming | en_US |
dc.date.accessioned | 2016-05-12T07:55:24Z | |
dc.date.available | 2016-05-12T07:55:24Z | |
dc.description.abstract | Paddy rice agriculture affects food supply, climate, water, biodiversity, and ecosystems. It varies substantially over time and space, for example, continuous expansion in northeastern China and rapid loss in southern China in the past decades. However, no maps at fine spatial resolution (e.g., 30-m) are available to document and illustrate the spatial patterns and temporal dynamics of paddy rice planting areas in China. We recently developed an automated, Landsat-based paddy rice mapping system (RICE-Landsat) that uses time series Landsat images and a pixel- and phenology-based algorithm to identify and map paddy rice planting areas. The algorithm is built upon the unique spectral properties of paddy rice during the flooding, transplanting and early part of vegetation growth phases, during which periods the rice paddy field is essentially a mixed pixel of water and green plants with open canopy. In addition, we also used MODIS land surface temperature data and/or air temperature data to define the thermal growing season, which is then used to select appropriate Landsat images in the data analysis. In this presentation, we will introduce the RICE-Landsat processing system, and showcase its applications in tracking the dynamics of paddy rice planting areas in northeastern China over the period of 1986-2015. Our presentation will cover additional case studies beyond the recent publication (Dong et al., 2015, Remote Sensing of Environment). | en_US |
dc.format | en_US | |
dc.identifier | http://www.earsel.org/SIG/timeseries/WSTA_AbstractBook_Final.pdf | en_US |
dc.identifier | https://mel.cgiar.org/reporting/downloadmelspace/hash/VMba1lzy/v/bf99222f249573b084bb90d845c9ffe7 | en_US |
dc.identifier.citation | Xiangming Xiao, Jinwei Dong, Jinheng Zhang, Yuanwei Qin, Geli Zhang, Cui Jin, Jie Wang, Yuting Zhou, Chandrashekhar Biradar. (17/6/2015). Tracking the dynamics of paddy rice planting areas through analysis of time series Landsat images. Stockholm, Sweden. | en_US |
dc.identifier.status | Open access | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11766/4772 | |
dc.language | en | en_US |
dc.publisher | European Association of Remote Sensing Laboratories (EARSeL) | en_US |
dc.rights | CC-BY-NC-4.0 | en_US |
dc.source | The 2nd International Workshop on Temporal Analysis of Satellite Images; | en_US |
dc.subject | paddy rice | en_US |
dc.title | Tracking the dynamics of paddy rice planting areas through analysis of time series Landsat images | en_US |
dc.type | Conference Paper | en_US |
dcterms.available | 2015-06-17 | en_US |
dcterms.issued | 2015-06-17 | en_US |
mel.project.open | https://mel.cgiar.org/projects/russianfundedprojects | en_US |