Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat

cg.contactm.nachit@cgiar.orgen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerInternational Maize and Wheat Improvement Center - CIMMYTen_US
cg.contributor.centerUnited States Department of Agriculture - USDAen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.date.embargo-end-dateTimelessen_US
cg.identifier.doihttps://dx.doi.org/10.1007/BF00226903en_US
cg.isijournalISI Journalen_US
cg.issn0040-5752en_US
cg.issn1432-2242en_US
cg.issue5en_US
cg.journalTAG Theoretical and Applied Geneticsen_US
cg.subject.agrovocgenotype-environment interactionen_US
cg.subject.agrovocDurum Wheaten_US
cg.volume83en_US
dc.contributorNachit, G.en_US
dc.contributorKetata, Habiben_US
dc.contributorGauch, H Gen_US
dc.contributorW. Zobel, Richarden_US
dc.creatorMiloudi, Nachiten_US
dc.date.accessioned2021-07-15T22:41:11Z
dc.date.available2021-07-15T22:41:11Z
dc.description.abstractThe joint durum wheat (Triticum turgidum L var 'durum') breeding program of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) for the Mediterranean region employs extensive multilocation testing. Multilocation testing produces significant genotype-environment (GE) interaction that reduces the accuracy for estimating yield and selecting appropriate germ plasm. The sum of squares (SS) of GE interaction was partitioned by linear regression techniques into joint, genotypic, and environmental regressions, and by Additive Main effects and the Multiplicative Interactions (AMMI) model into five significant Interaction Principal Component Axes (IPCA). The AMMI model was more effective in partitioning the interaction SS than the linear regression technique. The SS contained in the AMMI model was 6 times higher than the SS for all three regressions. Postdictive assessment recommended the use of the first five IPCA axes, while predictive assessment AMMI1 (main effects plus IPCA1). After elimination of random variation, AMMI1 estimates for genotypic yields within sites were more precise than unadjusted means. This increased precision was equivalent to increasing the number of replications by a factor of 3.7.en_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifier.citationNachit Miloudi, G. Nachit, Habib Ketata, H G Gauch, Richard W. Zobel. (1/3/1992). Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat. TAG Theoretical and Applied Genetics, 83 (5), pp. 597-601.en_US
dc.identifier.statusTimeless limited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/13422
dc.languageenen_US
dc.publisherSpringer (part of Springer Nature)en_US
dc.sourceTAG Theoretical and Applied Genetics;83,(1992) Pagination 597-601en_US
dc.subjectammi modelen_US
dc.subjectdurum wheaten_US
dc.subjecttriticum turgidum l var ‘durumen_US
dc.subjectprediction assessmenten_US
dc.titleUse of AMMI and linear regression models to analyze genotype-environment interaction in durum wheaten_US
dc.typeJournal Articleen_US
dcterms.available1992-03-01en_US
dcterms.extent597-601en_US
mel.impact-factor5.699en_US

Files