Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea

cg.contacts.udupa@cgiar.orgen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerGoethe University-Frankfurt - GU-Frankfurten_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.creator.idUdupa, Sripada M.: 0000-0003-4225-7843en_US
cg.date.embargo-end-dateTimelessen_US
cg.identifier.doihttps://dx.doi.org/10.1007/s001220050899en_US
cg.isijournalISI Journalen_US
cg.issn0040-5752en_US
cg.issn1432-2242en_US
cg.journalTAG Theoretical and Applied Geneticsen_US
cg.subject.agrovocdna fingerprintingen_US
cg.subject.agrovocphylogenyen_US
cg.volume97en_US
dc.contributorWeigand, Franzen_US
dc.contributorSaxena, Mohan C.en_US
dc.contributorKahl, Günteren_US
dc.creatorUdupa, Sripada M.en_US
dc.date.accessioned2021-07-16T21:20:49Z
dc.date.available2021-07-16T21:20:49Z
dc.description.abstractThe poor definition of variation in the ascochyta blight fungus (Ascochyta rabiei) has historically hindered breeding for resistance to the chickpea (Cicer arietinum L.) blight disease in West Asia and North Africa. We have employed 14 RAPD markers and an oligonucleotide probe complementary to the microsatellite sequence (GATA)4 to construct a genotype-specific DNA fragment profile from periodically sampled Syrian field isolates of this fungus. By using conventional pathogenicity tests and genome analysis with RAPD and microsatellite markers, we demonstrated that the DNA markers distinguish variability within and among the major pathotypes of A. rabiei and resolved each pathotypes into several genotypes. The genetic diversity estimate based on DNA marker analysis within pathotypes was highest for the least-aggressive pathotype (pathotype I), followed by the aggressive (pathotype II) and the most-aggressive pathotype (pathotype III). The pair-wise genetic distance estimated for all the isolates varied from 0.00 to 0.39, indicating a range from a clonal to a diverse relationship. On the basis of genome analysis, and information on the spatial and temporal distribution of the pathogen, a general picture of A. rabiei evolution in Syria is proposed.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifier.citationSripada M. Udupa, Franz Weigand, Mohan C. Saxena, Günter Kahl. (1/7/1998). Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. TAG Theoretical and Applied Genetics, 97, pp. 299-307.en_US
dc.identifier.statusTimeless limited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/13441
dc.languageenen_US
dc.publisherSpringer (part of Springer Nature)en_US
dc.sourceTAG Theoretical and Applied Genetics;97,Pagination 299-307en_US
dc.subjectresistance breedingen_US
dc.subjectascochyta blight of chickpeaen_US
dc.subjectpathogen variabilityen_US
dc.titleGenotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpeaen_US
dc.typeJournal Articleen_US
dcterms.available1998-07-01en_US
dcterms.extent299-307en_US
dcterms.issued1998-07-01en_US
mel.impact-factor5.699en_US

Files