Preparation and Curation of Multiyear, Multilocation, Multitrait Datasets

cg.contactz.kehel@cgiar.orgen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerConsortium De Recherche Sur La Pomme De Terre Du Québecen_US
cg.contributor.crpCGIAR Research Program on Wheat - WHEATen_US
cg.contributor.funderInternational Maize and Wheat Improvement Center - CIMMYTen_US
cg.contributor.projectCRP WHEAT Phase IIen_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.creator.idKehel, Zakaria: 0000-0002-1625-043Xen_US
cg.date.embargo-end-dateTimelessen_US
cg.identifier.doihttps://dx.doi.org/10.1007/978-1-0716-2237-7_6en_US
cg.isbn978-1-0716-2236-0en_US
cg.subject.agrovocexperimental designen_US
dc.contributorKehel, Zakariaen_US
dc.creatorAbed, Aminaen_US
dc.date.accessioned2022-09-13T21:00:00Z
dc.date.available2022-09-13T21:00:00Z
dc.description.abstractGenome-wide association studies (GWAS) are a powerful approach to dissect genotype-phenotype associations and identify causative regions. However, this power is highly influenced by the accuracy of the phenotypic data. To obtain accurate phenotypic values, the phenotyping should be achieved through multienvironment trials (METs). In order to avoid any technical errors, the required time needs to be spent on exploring, understanding, curating and adjusting the phenotypic data in each trial before combining them using an appropriate linear mixed model (LMM). The LMM is chosen to minimize as much as possible any effect that can lead to misestimation of the phenotypic values. The purpose of this chapter is to explain a series of important steps to explore and analyze data from METs used to characterize an association panel. Two datasets are used to illustrate two different scenarios.en_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifier.citationAmina Abed, Zakaria Kehel. (1/6/2022). Preparation and Curation of Multiyear, Multilocation, Multitrait Datasets, in "Genome-Wide Association Studies. Methods in Molecular Biology, vol 2481". United States of America: Humana New York.en_US
dc.identifier.statusTimeless limited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/67687
dc.languageenen_US
dc.publisherHumana New Yorken_US
dc.subjectmultienvironment trialsen_US
dc.subjectdescriptive statisticsen_US
dc.subjectadjusted phenotype per trialen_US
dc.subjectanalysis of residualsen_US
dc.subjectcombined phenotype across trialsen_US
dc.subjectdesign diagnosticsen_US
dc.subjectgenotype × environmenten_US
dc.subjectgenotype–phenotype associationen_US
dc.subjectlinear mixed modelen_US
dc.subjectoutliersen_US
dc.subjectaw phenotype per trialen_US
dc.titlePreparation and Curation of Multiyear, Multilocation, Multitrait Datasetsen_US
dc.typeBook Chapteren_US
dcterms.available2022-06-01en_US

Files