Design and Analysis of Delay-Tolerant Sensor Networks for Monitoring and Tracking Free-Roaming Animals

cg.contactm.louhaichi@cgiar.orgen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerOregon State University - OSU United Statesen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryUSen_US
cg.coverage.regionNorthern Americaen_US
cg.creator.idLouhaichi, Mounir: 0000-0002-4543-7631en_US
cg.date.embargo-end-dateTimelessen_US
cg.identifier.doihttps://dx.doi.org/10.1109/TWC.2012.012412.111405en_US
cg.isijournalISI Journalen_US
cg.issn1536-1276en_US
cg.issue3en_US
cg.journalIEEE Transactions on Wireless Communicationsen_US
cg.volume11en_US
dc.contributorBradford, Kyleen_US
dc.contributorBrugger, Maxen_US
dc.contributorHamdaoui, Bechiren_US
dc.contributorKovchegov, Yevgeniyen_US
dc.contributorJohnson, Douglas E.en_US
dc.contributorLouhaichi, Mouniren_US
dc.creatorEhsan, Saminaen_US
dc.date.accessioned2019-02-27T22:12:39Z
dc.date.available2019-02-27T22:12:39Z
dc.description.abstractThis paper is concerned with the design and analysis of delay-tolerant networks (DTNs) deployed for free-roaming animal monitoring, wherein information is either transmitted or carried to static access-points by the animals whose movement is assumed to be random. Specifically, in such mobility-aided applications where routing is performed in a store-carry-anddrop manner, limited buffer capacity of a carrier node plays a critical role, and data loss due to buffer overflow heavily depends on access-point density. Driven by this fact, our focus in this paper is on providing sufficient conditions on accesspoint density that limit the likelihood of buffer overflow. We first derive sufficient access-point density conditions that ensure that the data loss rates are statistically guaranteed to be below a given threshold. Then, we evaluate and validate the derived theoretical results through comparison with both synthetic and real-world data.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifier.citationSamina Ehsan, Kyle Bradford, Max Brugger, Bechir Hamdaoui, Yevgeniy Kovchegov, Douglas E. Johnson, Mounir Louhaichi. (3/2/2012). Design and Analysis of Delay-Tolerant Sensor Networks for Monitoring and Tracking Free-Roaming Animals. IEEE Transactions on Wireless Communications, 11 (3), pp. 1220-1227.en_US
dc.identifier.statusTimeless limited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/9572
dc.languageenen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.sourceIEEE Transactions on Wireless Communications;11,(2012) Pagination 1220-1227en_US
dc.subjectperformance modelingen_US
dc.subjectdata loss analysisen_US
dc.subjectsufficient node densityen_US
dc.subjectdelay tolerant sensor networksen_US
dc.subjectfree-roaming animal monitoring system.en_US
dc.titleDesign and Analysis of Delay-Tolerant Sensor Networks for Monitoring and Tracking Free-Roaming Animalsen_US
dc.typeJournal Articleen_US
dcterms.available2012-02-03en_US
dcterms.extent1220-1227en_US
mel.impact-factor5.888en_US

Files