Optimizing near Infrared Reflectance Spectroscopy to Predict Nutritional Quality of Chickpea Straw for Livestock Feeding

cg.contacttenu.alemu@gmail.comen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerEthiopian Institute of Agricultural Research - EIARen_US
cg.contributor.centerHawassa University - HU - Ethiopiaen_US
cg.contributor.centerHawassa University, College of Agriculture - HU - CAen_US
cg.contributor.centerNottingham Trent University, School of Animal, Rural and Environmental Sciences - NTU - School of Animalen_US
cg.contributor.crpCGIAR Research Program on Livestock Agri-Food Systems - Livestocken_US
cg.contributor.funderCGIAR Research Program on Livestock Agri-Food Systems - Livestocken_US
cg.contributor.projectCGIAR Research Program on Livestock Agri-Food Systemsen_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryETen_US
cg.coverage.end-date2020-10-20en_US
cg.coverage.regionEastern Africaen_US
cg.coverage.start-date2019-12-02en_US
cg.creator.idWamatu, Jane: 0000-0003-3544-6718en_US
cg.creator.idRischkowsky, Barbara: 0000-0002-0035-471Xen_US
cg.identifier.doihttps://dx.doi.org/10.3390/ani11123409en_US
cg.isijournalISI Journalen_US
cg.issn2076-2615en_US
cg.issue11en_US
cg.journalAnimalsen_US
cg.subject.agrovoccalibrationen_US
cg.subject.agrovocChickpeaen_US
cg.volume12en_US
dc.contributorWamatu, Janeen_US
dc.contributorTolera, Adugnaen_US
dc.contributorBeyan, Mohammeden_US
dc.contributorEshete, Millionen_US
dc.contributorAlkhtib, Ashrafen_US
dc.contributorRischkowsky, Barbaraen_US
dc.creatorAlemu, Tenaen_US
dc.date.accessioned2021-12-02T15:58:16Z
dc.date.available2021-12-02T15:58:16Z
dc.description.abstractMultidimensional improvement programs of chickpea require screening of a large number of genotypes for straw nutritive value. The ability of near infrared reflectance spectroscopy (NIRS) to determine the nutritive value of chickpea straw was identified in the current study. A total of 480 samples of chickpea straw representing a nation-wide range of environments and genotypic diversity (40 genotypes) were scanned at a spectral range of 1108 to 2492 nm. The samples were reduced to 190 representative samples based on the spectral data then divided into a calibration set (160 samples) and a cross-validation set (30 samples). All 190 samples were analysed for dry matter, ash, crude protein, neutral detergent fibre, acid detergent fibre, acid detergent lignin, Zn, Mn, Ca, Mg, Fe, P, and in vitro gas production metabolizable energy using conventional methods. Multiple regression analysis was used to build the prediction equations. The prediction equation generated by the study accurately predicted the nutritive value of chickpea straw (R2 of cross validation >0.68; standard error of prediction <1%). Breeding programs targeting improving food-feed traits of chickpea could use NIRS as a fast, cheap, and reliable tool to screen genotypes for straw nutritional quality. Keywords: calibration; validation; prediction error; nutritional quality; crop residue; NIRSen_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/2fff4bf911000ebba43e6e1e3b579896/v/6ac8e493d513df3b5b4f72a73a62ed96en_US
dc.identifier.citationTena Alemu, Jane Wamatu, Adugna Tolera, Mohammed Beyan, Million Eshete, Ashraf Alkhtib, Barbara Rischkowsky. (29/11/2021). Optimizing near Infrared Reflectance Spectroscopy to Predict Nutritional Quality of Chickpea Straw for Livestock Feeding. Animals, 12 (11).en_US
dc.identifier.statusOpen accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/66514
dc.languageenen_US
dc.publisherMDPIen_US
dc.rightsCC-BY-4.0en_US
dc.sourceAnimals;12,(2021)en_US
dc.subjectnirsen_US
dc.subjectnutritional qualityen_US
dc.subjectcrop residueen_US
dc.subjectvalidationen_US
dc.subjectprediction erroren_US
dc.titleOptimizing near Infrared Reflectance Spectroscopy to Predict Nutritional Quality of Chickpea Straw for Livestock Feedingen_US
dc.typeJournal Articleen_US
dcterms.available2021-11-29en_US
mel.impact-factor2.752en_US
mel.project.openhttps://mel.cgiar.org/projects/237en_US

Files