Symmetrizing and Variance Stabilizing Transformations of Sample Coefficient of Variation from Inverse Gaussian Distribution

cg.contactM.SINGH@CGIAR.ORGen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerConcordia Universityen_US
cg.contributor.funderNatural Sciences and Engineering Research Council - NSERC - CRSNGen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.creator.idChaubey, Yogendra Prasad: 0000-0002-0234-1429en_US
cg.creator.idSingh, Murari: 0000-0001-5450-0949en_US
cg.date.embargo-end-dateTimelessen_US
cg.identifier.doihttps://dx.doi.org/10.1007/s13571-017-0136-zen_US
cg.isijournalISI Journalen_US
cg.issn0976-8386en_US
cg.issn0976-8394en_US
cg.journalSankhya B - Applied and Interdisciplinary Statisticsen_US
cg.subject.agrovoccoefficient of variationen_US
cg.volume79en_US
dc.contributorSingh, Murarien_US
dc.contributorSen, Debarajen_US
dc.creatorChaubey, Yogendra Prasaden_US
dc.date.accessioned2021-02-16T00:26:41Z
dc.date.available2021-02-16T00:26:41Z
dc.description.abstractCoefficient of variation (CV) plays an important role in statistical practice; however, its sampling distribution may not be easy to compute. In this paper, the distributional properties of the sample CV from an inverse Gaussian distribution are investigated through transformations. Specifically, the symmetrizing transformation as outlined in Chaubey and Mudholkar (1983), that requires numerical techniques, is contrasted with the explicitly available variance stabilizing transformation (VST). The symmetrizing transformation scores very high as compared to the VST, especially in a power family. The usefulness of the resulting approximation is illustrated through a numerical example.en_US
dc.identifierhttps://mel.cgiar.org/dspace/limiteden_US
dc.identifier.citationYogendra Prasad Chaubey, Murari Singh, Debaraj Sen. (1/11/2017). Symmetrizing and Variance Stabilizing Transformations of Sample Coefficient of Variation from Inverse Gaussian Distribution. Sankhya B - Applied and Interdisciplinary Statistics, 79, pp. 217-246.en_US
dc.identifier.statusTimeless limited accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/12495
dc.languageenen_US
dc.publisherSpringer Verlag (Germany)en_US
dc.sourceSankhya B - Applied and Interdisciplinary Statistics;79,(2017) Pagination 217-246en_US
dc.subjectsymmetrizing transformationen_US
dc.subjectinverse gaussian distributionen_US
dc.subjectvariance stabilizing transformationen_US
dc.titleSymmetrizing and Variance Stabilizing Transformations of Sample Coefficient of Variation from Inverse Gaussian Distributionen_US
dc.typeJournal Articleen_US
dcterms.available2017-06-23en_US
dcterms.extent217-246en_US
dcterms.issued2017-11-01en_US

Files