Combined Use of Low-Cost Remote Sensing Techniques and δ13C to Assess Bread Wheat Grain Yield under Different Water and Nitrogen Conditions

cg.contactdserret@ub.eduen_US
cg.contributor.centerInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.centerInstitut Technique des Grandes Cultures - ITGCen_US
cg.contributor.centerUniversity of Barcelona - UNI-Ben_US
cg.contributor.centerUniversity of Lleida - UDLen_US
cg.contributor.funderInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.contributor.projectCommunication and Documentation Information Services (CODIS)en_US
cg.contributor.project-lead-instituteInternational Center for Agricultural Research in the Dry Areas - ICARDAen_US
cg.coverage.countryDZen_US
cg.coverage.regionNorthern Africaen_US
cg.identifier.doihttps://dx.doi.org/10.3390/agronomy9060285en_US
cg.isijournalISI Journalen_US
cg.issn2073-4395en_US
cg.issue6en_US
cg.journalAgronomyen_US
cg.subject.agrovocwheaten_US
cg.subject.agrovoccanopy temperature depressionen_US
cg.subject.agrovocndvien_US
cg.volume9en_US
dc.contributorGracia-Romero, Adrianen_US
dc.contributorKellas, Nassimen_US
dc.contributorKaddour, Mohameden_US
dc.contributorChadouli, Ahmeden_US
dc.contributorKarrou, Mohammeden_US
dc.contributorAraus, José Luisen_US
dc.contributorSerret, Maria Doloresen_US
dc.creatorYousfi, Salimaen_US
dc.date.accessioned2021-08-04T23:34:06Z
dc.date.available2021-08-04T23:34:06Z
dc.description.abstractVegetation indices and canopy temperature are the most usual remote sensing approaches to assess cereal performance. Understanding the relationships of these parameters and yield may help design more efficient strategies to monitor crop performance. We present an evaluation of vegetation indices (derived from RGB images and multispectral data) and water status traits (through the canopy temperature, stomatal conductance and carbon isotopic composition) measured during the reproductive stage for genotype phenotyping in a study of four wheat genotypes growing under different water and nitrogen regimes in north Algeria. Differences among the cultivars were reported through the vegetation indices, but not with the water status traits. Both approximations correlated significantly with grain yield (GY), reporting stronger correlations under support irrigation and N-fertilization than the rainfed or the no N-fertilization conditions. For Nfertilized trials (irrigated or rainfed) water status parameters were the main factors predicting relative GY performance, while in the absence of N-fertilization, the green canopy area (assessed through GGA) was the main factor negatively correlated with GY. Regression models for GY estimation were generated using data from three consecutive growing seasons. The results highlighted the usefulness of vegetation indices derived from RGB images predicting GY.en_US
dc.formatPDFen_US
dc.identifierhttps://mel.cgiar.org/reporting/downloadmelspace/hash/08951b4822245b5dac6eed0ff4b1212c/v/c534127ee17829e31e897be62dcff67ben_US
dc.identifier.citationSalima Yousfi, Adrian Gracia-Romero, Nassim Kellas, Mohamed Kaddour, Ahmed Chadouli, Mohammed Karrou, José Luis Araus, Maria Dolores Serret. (31/5/2019). Combined Use of Low-Cost Remote Sensing Techniques and δ13C to Assess Bread Wheat Grain Yield under Different Water and Nitrogen Conditions. Agronomy, 9 (6).en_US
dc.identifier.statusOpen accessen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11766/13562
dc.languageenen_US
dc.publisherMDPIen_US
dc.rightsCC-BY-4.0en_US
dc.sourceAgronomy;9,(2019)en_US
dc.subjectrgb imagesen_US
dc.subjectgrain yielden_US
dc.subjectδ13cen_US
dc.titleCombined Use of Low-Cost Remote Sensing Techniques and δ13C to Assess Bread Wheat Grain Yield under Different Water and Nitrogen Conditionsen_US
dc.typeJournal Articleen_US
dcterms.available2019-05-31en_US
mel.impact-factor3.417en_US

Files